Abstract

ABSTRACTThe purpose of this paper was to develop a hydrophilic matrix system for extended oral delivery of zileuton, and study the effects of certain formulation, processing, and dissolution variables on in vitro drug release. Tablet formulations with 60–70% drug and varying release rates were prepared by wet granulation using low and medium viscosity grades of hydroxypropylmethocellulose. In vitro drug release was evaluated using USP apparatus I. The in vitro drug release from all formulations followed zero-order kinetics and was independent of compression force. In general, the release rate decreased with increasing drug load and higher polymer concentration or viscosity. High-shear granulation also resulted in lower release rate. Accelerated release was observed with increased agitation as well as in the dissolution media with higher surfactant concentration and/or ionic strength. No stereoselective release from the matrix system was observed. The hydrophilic matrix system effectively controlled the in vitro release of zileuton. Matrix tablets with desired release rates can be prepared by adjusting various formulation and processing parameters. The matrix system also has the advantage of simple processing and relatively low cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.