SummaryProduction from a fractured vertical well will lead to a redistribution of the stress field in formations. If the induced stress changes are sufficiently large to overcome the effect of the initial horizontal-stress deviator, the direction of the minimum horizontal stress can be turned into the direction of the maximum horizontal stress within an elliptical region around the initial fracture, resulting in a stress-reversal region near the wellbore. In such cases, a refracturing treatment can create a refracture that propagates orthogonally to the initial fracture because of the stress reversal. As such, the high-pressure area of the formation can be stimulated by the refracture, and the productivity of the refractured well can be improved. In this work, we develop a semianalytical model to evaluate the performance of a refractured vertical well with an orthogonal refracture. To simulate the well performance throughout the entire production period, we divide the well production into three stages: the first stage, when the well is producing oil with the initial fracture; the second stage, when the well is shut down for the refracturing treatment; and the third stage, when the well is producing oil with both the initial fracture and the refracture. In addition, by discretizing the initial fracture and the refracture into small segments, the conductivity of the fractures can be taken into account, and the geometry of the fracture system can be captured. We use the Green-function method to analytically simulate the reservoir flow and use the finite-difference method to numerically simulate the fracture flow; therefore, a semianalytical model can be constructed by coupling the reservoir-flow equations with the fracture-flow equations. This proposed model is applied to different wellbore and reservoir conditions. The calculated results show that this proposed model is versatile because it can simulate various wellbore constraints, including the conditions of constant bottomhole pressure (BHP), varying BHP, constant production rate, and varying production rate. The permeability anisotropy of the reservoir system, as well as the nonuniform conductivity distribution along the fracture, can also be incorporated into this proposed model. In addition, we demonstrate that this proposed model can be used to simulate other types of refractured vertical wells with minor modifications.
Read full abstract