Chronic Kidney Disease (CKD) presents a significant global health challenge with limited treatment options. Nesfatin-1, an anorexigenic peptide, has demonstrated antioxidant, anti-inflammatory, and anti-apoptotic properties in various diseases. However, the role of nesfatin-1 in CKD remains unclear. This study investigates the potential renoprotective effects of nesfatin-1 in adenine-induced CKD mice and in NRK-52E renal epithelial cells.Male C57BL/6J mice and NRK-52E renal epithelial cells were administered adenine to induce CKD. Various aspects of renal function, histopathology, oxidative stress, inflammation, apoptosis, and renal interstitial fibrosis were assessed and downstream pathways were investigated.Adenine-fed mice exhibited reduced nesfatin-1 expression and increased markers of kidney damage, including elevated blood urea nitrogen (BUN), serum creatinine, and histological abnormalities, reactive oxygen species (ROS), inflammation, apoptosis, and fibrosis. Treatment with nesfatin-1 in adenine induced mice significantly reversed these changes. Nesfatin-1 also lowered calcium levels and the expression of inflammatory markers, including IL-1β, IL-6, TNF-α, and Nf-kB. Furthermore, nesfatin-1 reduced the expression of apoptotic markers (Caspase-3, Caspase-1, Bax/Bcl2 ratio) and restored the balance of Bcl2 and MMP. Lastly, nesfatin-1 attenuated fibrotic markers (Tgf-β, Smad2/3,4, type IV collagen, α-SMA) in both adenine-induced CKD mice and NRK-52E cells.In conclusion, our results suggest that nesfatin-1 may enhance kidney function in adenine-induced CKD mice and NRK-52E cells. The renoprotective effects of nesfatin-1 are likely associated with its antioxidant, anti-inflammatory, anti-apoptotic, and anti-fibrotic properties.