Sweet potato (Ipomoea batatas), an important root crop, has storage roots rich in starch that are edible and serve as a raw material in bioenergy production. Increasing the storage-root starch contents is a key sweet potato breeding goal. Phosphoglucomutase (PGM) is the catalytic enzyme for the interconversion of glucose-6-phosphate and glucose-1-phosphate, precursors in the plant starch synthetic pathway. Plant PGMs have plastidial and cytosolic isoforms, based on their subcellular localization. Here, IbpPGM, containing 22 exons and 21 introns, was cloned from the sweet potato line Xu 781. This gene was highly expressed in the storage roots and leaves, and its expression was induced by exogenous sucrose treatments. The mature IbpPGM protein was successfully expressed in Escherichia coli when a 73-aa chloroplastic transit peptide detected in the N-terminus was excised. The subcellular localization confirmed that IbpPGM was localized to the chloroplasts. The low-starch sweet potato cultivar Lizixiang IbpPGM-overexpression lines showed significantly increased starch, glucose, and fructose levels but a decreased sucrose level. Additionally, the expression levels of the starch synthetic pathway genes in the storage roots were up-regulated to different extents. Thus, IbpPGM significantly increased the starch content of the sweet potato storage roots, which makes it a candidate gene for the genetic engineering of the sweet potato.
Read full abstract