Cu/TiB2 composite combines electrical conductivity and wear resistance, leading to its wide application prospect in electrical contact. In this study, electromagnetic impact was applied to compact Cu/TiB2 powder. The interaction between powder and die under electromagnetic impact was analyzed by observing the surface quality, density, microstructure, and hardness. The results showed that when the energy was less than 21 kJ, the increase in energy could enhance density and tensile strength of the compact. However, when the energy exceeded 21 kJ, the state of compact hardly changed and burr near the edge would be worsened. Besides, the hardness of the upper surface increased gradually from the center to the edge, while the opposite was true for the lower surface, reflecting the spatial distribution of density. With the aid of simulation, it was found that the stress wave propagation influenced the densification behavior and led to the variation of density.