Plant height is a critical agronomic that affects both plant architecture and yield. To decipher the genetic mechanisms underlying winter wheat plant height and identify candidate genes associated with this trait, we conducted phenotypic analysis on 239 wheat varieties (lines) collected from around the world. This analysis was complemented by genotyping using the wheat 55K SNP chip. A Wholegenome association analysis (GWAS) of wheat plant height was conducted utilizing the MLM (Q+K) model within TASSLE software. The results revealed significant phenotypic variation in wheat plant height across different years, with coefficients of variation ranging from 0.96% to 1.97%. Additionally, there was a strong correlation in plant height measurements between different years. GWAS identified 44 SNP markers significantly associated with wheat plant height across various environments (P ≤ 0.00001), predominantly distributed on chromosomes 1B, 1D, 2A, 2B, 2D, 3B, 3D, 4A, 4B, 6B, 6D, and 7D, explaining individual phenotypic variance rates ranging from 5.00% to 11.11%. Further, by mining association loci with substantial phenotypic effects and stability across multiple environments, seven candidate genes related to wheat plant height have been identified. This study provides new genetic markers and resources for improving wheat plant height.
Read full abstract