Typical eruptions at Kīlauea volcano involve the evacuation of magma from the summit and/or south caldera reservoirs towards the East or Southwest rift zones. The reservoir drainage provokes the summit deflation, and on extreme occasions, such as in 2018, the summit caldera collapse. Systematically, seismic tremor, often with a particular multichromatic spectral signature characterized by frequency gliding, accompanies summit deflation episodes. In 2018, this type of continuous tremor accompanied the steady subsidence stage, whereas discrete earthquakes dominated the collapse stage. In this work, we aim to understand the source mechanism of the syn-deflation tremor of 2018. To locate the seismic source, we develop a novel machine-learning-based algorithm as an alternative to the amplitude source location technique. We use a large high-resolution catalog to resolve a composite amplitude decay function. Under these conditions, our method outperforms the traditional technique. We locate the tremor source 1 km below the eastern perimeter of the Halema‘uma‘u crater, which coincides with the position of the summit magma reservoir, as determined in many other studies. Furthermore, we model the seismic source as pressure oscillations driven by gas porous flow at the roof of the reservoir. In this model, gas accumulates temporarily in many gas pockets between the magma and the roof. Our modeling shows that the gas flux is responsible for the tremor amplitude modulations, whereas the gas pocket thickness controls the frequency variations. Beyond a critical point of depressurization, the magma cannot contribute further to the tremor oscillations via decompression-driven degassing, nor support the roof above it, resulting in rock failure. This work advances our understanding of magma-degassing dynamics and tremor generation at Kilauea volcano, and provides novel seismological techniques for volcano seismology monitoring and research.
Read full abstract