The spatiotemporal variability of precipitation profoundly influences terrestrial carbon fluxes, driving shifts between carbon source and sink dynamics through gross primary productivity (GPP) and ecosystem respiration (ER). As a result, the sensitivities of GPP and ER to precipitation (SGPP and SER), along with their differential responses, are pivotal for understanding ecosystem reactions to precipitation changes and predicting future ecosystem functions. However, comprehensive evaluations of the spatiotemporal variability and differences in SGPP and SER remain notably scarce. In this study, we utilized eddy covariance flux data to investigate the spatial patterns, temporal dynamics, and differences in SGPP and SER. Spatially, SGPP and SER were generally strongly correlated. Among different ecosystems, the correlation between SGPP and SER was lowest in mixed forest and highest in broadleaf and needleleaf forest. Within the same ecosystem, SGPP and SER exhibited considerable variation but showed no significant differences. In contrast, they differed significantly across ecosystems, with pronounced variability in their magnitudes. For example, shrubland exhibited the highest values for SGPP, whereas needleleaf forest showed the highest values for SER. Temporally, SER demonstrated more pronounced changes than SGPP. Different ecosystems displayed distinct trends: shrubland exhibited an upward trend for both metrics, while grassland showed a downward trend in both SGPP and SER. Forest, on the other hand, maintained stable SGPP but displayed a downward trend in SER. Additionally, SGPP and SER exhibited a notable non-linear response to changes in the aridity index (AI), with both showing a rapid decline followed by stabilization. However, SER demonstrated a wider adaptive range to precipitation changes. Generally, this research enhances our understanding of the spatiotemporal variations in ecosystem carbon fluxes under changing precipitation patterns.
Read full abstract