Automated polyp segmentation from colonoscopy images is crucial for colorectal cancer diagnosis. The accuracy of such segmentation, however, is challenged by two main factors. First, the variability in polyps' size, shape, and color, coupled with the scarcity of well-annotated data due to the need for specialized manual annotation, hampers the efficacy of existing deep learning methods. Second, concealed polyps often blend with adjacent intestinal tissues, leading to poor contrast that challenges segmentation models. Recently, diffusion models have been explored and adapted for polyp segmentation tasks. However, the significant domain gap between RGB-colonoscopy images and grayscale segmentation masks, along with the low efficiency of the diffusion generation process, hinders the practical implementation of these models. To mitigate these challenges, we introduce the Highlighted Diffusion Model Plus (HDM+), a two-stage polyp segmentation framework. This framework incorporates the Highlighted Diffusion Model (HDM) to provide explicit semantic guidance, thereby enhancing segmentation accuracy. In the initial stage, the HDM is trained using highlighted ground-truth data, which emphasizes polyp regions while suppressing the background in the images. This approach reduces the domain gap by focusing on the image itself rather than on the segmentation mask. In the subsequent second stage, we employ the highlighted features from the trained HDM's U-Net model as plug-in priors for polyp segmentation, rather than generating highlighted images, thereby increasing efficiency. Extensive experiments conducted on six polyp segmentation benchmarks demonstrate the effectiveness of our approach.