The contact forces generated during the motion of revolute joints with clearances significantly impact the dynamic performance of mechanisms, making it essential to develop an accurate contact force model. Traditional contact models often neglect the influence of elastic layers or assume that the bushing thickness is equal to its radius, which limits their applicability. To address the dynamic contact problem in revolute joints with small clearances, this study employs an improved Winkler elastic foundation model and introduces an elastic layer correction coefficient to refine the static contact model. The model's validity is verified using the finite element method. Building on this, a new contact force model is proposed, incorporating the optimal damping term from multiple continuous contact models. Finally, experimental validation is conducted using the crank-slider mechanism and typical applications in the Variable Stator Vane (VSV) mechanism. The results demonstrate that the proposed contact force model effectively predicts the dynamic characteristics of mechanisms with clearances.