This paper presents the effects of the torque model on the control of a variable reluctance spherical motor (VRSM) that offers several attractive features by combining multi-DOF motions in a single joint. A general form of the torque model for a VRSM is derived using the principle of energy conversion. The torque models for two specific design configurations developed at Georgia Tech are compared. The first has been based on an existing design characterized by a torque model in quadratic form. For feedback control of the spherical motor, the quadratic form of the torque model requires the use of nonlinear optimization schemes for computing the stator coil current inputs. The second design incorporating high coercive permanent magnets has a linear torque–current relationship and thus allows a closed form solution for both forward and inverse torque models. The effects of the torque model on a PD-controlled VRSM prototype has been studied both numerically and experimentally. Experimental results agree well with the computation derived analytically.
Read full abstract