Abstract

This paper presents the basis for optimizing the design of a three degrees-of-freedom (DOF) variable reluctance (VR) spherical motor which offers some attractive features by combining pitch, roll, and yaw motion in a single joint. The spherical wrist motor offers a major performance advantage in trajectory planning and control as compared to the popular three-consecutive-rotational joint wrist. Since an improved performance estimate is required, a method for optimizing the VR spherical motor’s magnetics was developed. This paper begins with a presentation of the geometrical independent and dependent variables which fully described the design of a VR spherical motor. These variables are derived from examination of the torque prediction model. Next, a complete set of constraint equations governing geometry, thermal limitations, amplifier specifications, iron saturation, and leakage flux are derived. Finally, an example problem is presented where the motor’s geometry is determined by maximizing the output torque at one rotor position. The concept of developing a spherical motor with uniform torque characteristics is discussed with respect to the optimization methodology. It is expected that the resulting analysis will improve the analytical torque prediction model by the inclusion of constraint equations, aid in developing future VR spherical motor designs, improve estimates of performance, and therefore will offer better insight into potential applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.