We report the evolution of electrical transport properties in insulating FeSe films with electron doping induced by the ionic liquid gating technique. Superconductivity never emerges in the strong insulators with variable-range hopping behavior but is shown to arise once the resistance of the normal state varies as $ln(1/T)$, indicating that this behavior corresponds to the minimal conducting character for developing superconductivity. Our work points toward granular metallicity for the $ln(1/T)$ behavior, suggesting that the emergence of superconductivity requires at least an insulating state containing metallic granules. Moreover, it unravels an electronic segregation in proximity to superconductor-insulator transition, which calls for a comprehensive understanding of this segregated phase.
Read full abstract