Abstract
First-principles calculations of the mayenite-based oxide, [Ca12Al14O32]2+(2e−), reveal the mechanism responsible for its high conductivity. A detailed comparison of the electronic and optical properties of this material with those of the recently discovered transparent conducting oxide, H-doped UV-activated Ca12Al14O33, allowed us to conclude that the enhanced conductivity in [Ca12Al14O32]2+(2e−) is achieved by elimination of the Coulomb blockade of the charge carriers. This results in a transition from variable range-hopping behavior with a Coulomb gap in H-doped UV-irradiated Ca12Al14O33, to bulk conductivity in [Ca12Al14O32]2+(2e−). Further, the high degree of delocalization of the conduction electrons obtained in [Ca12Al14O32]2+(2e−) indicates that it cannot be classified as an electride, as originally suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.