During this study, the physicochemical properties, color, and volatile aroma compounds of the original wines produced from the grape varieties ‘Hassan’, ‘Zuoshaner’, ‘Beibinghong’, ‘Zuoyouhong’, ‘Beta’, ‘Shuanghong’, ‘Zijingganlu’, ‘Cabernet Sauvignon’, and ‘Syrah’ were determined and sensory evaluation was performed. Results indicated that ‘Hassan’ contained the most solids, ‘Zuoshaner’ produced the most total acid, residual sugar, total anthocyanin, and total phenol, and ‘Shuanghong’ produced the most tannin. Calculation of the chroma and hue of the wines according to the CIEL*a*b* parameters revealed that the ‘Cabernet Sauvignon’ wines were the brightest of the nine varieties and that the ‘Zuoshaner’ wines had the greatest red hue and yellow hue and the greatest saturation’. A total of 52 volatile compounds were identified and quantified in nine wine samples by HS-GC-IMS analysis, with the most significant number of species detected being 20 esters, followed by 16 alcohols, 8 aldehydes, four ketones, one terpene, and one furan, with the highest total volatile compound content being ‘Beta’. A total of 14 volatile components with OAV (odor activity value) >1 were calculated using the odor activity value (OAV) of the threshold of the aromatic compound, and the OPLS-DA analysis was performed by orthogonal partial least squares discriminant analysis (OPLS-DA) using the OAV values of the compounds with OAV values >1 as the Y variable. The VIP (Variable Importance in Projection) values of six compounds, ethyl isobutyrate, ethyl hexanoate-D, 2-methylpropanal, ethyl octanoate, ethyl butanoate-D, and Isoamyl acetate-D, were calculated to be higher than one between groups, indicating that these six compounds may influence aroma differences. It is essential to recognize that the results of this study have implications for understanding the quality differences between different varieties of wines and for developing wines that have the characteristics of those varieties.
Read full abstract