Rhythmic entrainment echoes-rhythmic brain responses that outlast rhythmic stimulation-can demonstrate endogenous neural oscillations entrained by the stimulus rhythm. Here, we tested for such echoes in auditory perception. Participants detected a pure tone target, presented at a variable delay after another pure tone that was rhythmically modulated in amplitude. In four experiments involving 154 human (female and male) participants, we tested (1) which stimulus rate produces the strongest entrainment echo and, inspired by the tonotopical organization of the auditory system and findings in nonhuman primates, (2) whether these are organized according to sound frequency. We found the strongest entrainment echoes after 6 and 8 Hz stimulation, respectively. The best moments for target detection (in phase or antiphase with the preceding rhythm) depended on whether sound frequencies of entraining and target stimuli matched, which is in line with a tonotopical organization. However, for the same experimental condition, best moments were not always consistent across experiments. We provide a speculative explanation for these differences that relies on the notion that neural entrainment and repetition-related adaptation might exercise competing opposite influences on perception. Together, we find rhythmic echoes in auditory perception that seem more complex than those predicted from initial theories of neural entrainment.SIGNIFICANCE STATEMENT Rhythmic entrainment echoes are rhythmic brain responses that are produced by a rhythmic stimulus and persist after its offset. These echoes play an important role for the identification of endogenous brain oscillations, entrained by rhythmic stimulation, and give us insights into whether and how participants predict the timing of events. In four independent experiments involving >150 participants, we examined entrainment echoes in auditory perception. We found that entrainment echoes have a preferred rate (between 6 and 8 Hz) and seem to follow the tonotopic organization of the auditory system. Although speculative, we also found evidence that several, potentially competing processes might interact to produce such echoes, a notion that might need to be considered for future experimental design.
Read full abstract