We determine, under a certain assumption, the Alexeev–Brion moduli scheme M of affine spherical G-varieties with a prescribed weight monoid . In Papadakis and Van Steirteghem (Ann. Inst. Fourier (Grenoble). 62(5) 1765–1809 19) we showed that if G is a connected complex reductive group of type A and is the weight monoid of a spherical G-module, then M is an affine space. Here we prove that this remains true without any restriction on the type of G.