<strong>Context:</strong> The novel coronavirus named as COVID-19 (SARS-CoV-2) from its origin in Hubei spread across the continent in a short period of six months’ time. Till date there is no drug to cure the novel corona virus SARS-CoV-2. Earlier studies on SARS-CoV-1 suggests that interleukin 6 (IL-6) and Interleukin 8 (IL-8) were in the higher levels indicating the key role of IL. <strong>Aim:</strong> Molecular simulation studies were carried out on the selected 24 chemical constituents present in rasam against IL-6 to identify the key interaction between the amino acid residues and their chemical structure. <strong>Materials and Methods:</strong> A library of 24 chemical constituents was sketched using Chem Sketch programming 8.0. The 3D structures of ligands were retrieved in mol format in Maestro v 11.3 and the ligands were optimized utilizing ligprep (4.3) module (Schrödinger 2018-1). <strong>Results:</strong> One of the chemical constituents sinigrin a glucosinolate emerged as top scorer with a GLIDE score of -6.333. It was apparent from the examination, that the Van der Waals (ΔG bindvdW) and coulomb energy interactions were major great contributors. The structural diversity of sinigrin from the rest of other chemical constituents in rasam led to significantly better interaction with amino acid residues. <strong>Conclusion:</strong> The study identifies sinigrin, as one of the active constituents in rasam possessing good binding affinity against IL-6 which can be used as a dietary supplement and can be used as a control measure to fight against Covid-19.