This paper presents the digitalization of dentistry medical records to support the dentist in the patient examination process. A dentist uses manual input to fill out the evaluation form by drawing and labeling each patient’s tooth condition based on their observations. Consequently, it takes too long to finish only one examination. For time efficiency, using AI-based digitalization technology can be a promising solution. To address the problem, we made and compared several classification models to recognize human dental conditions to help doctors analyze patient teeth. We apply the YOLOv5, MobileNet V2, and IONet (proposed CNN model) as deep learning models to recognize the five common human dental conditions: normal, filling, caries, gangrene radix, and impaction. We tested the ability of YOLO classification as an object detection model and compared it with classification models. We used a dataset of 3.708 intraoral dental images generated by various augmentation methods from 1.767 original images. We collected and annotated the dataset with the help of dentists. Furthermore, the dataset is divided into three parts: 90% of the total dataset is used as training and validation data, then divided again into 80% training data and 20% validation data. 10% of the total dataset will be used as testing data to compare classification performance. Based on our experiments, YOLOv5, as an object detection model, can classify dental conditions in humans better than the classification model. YOLOv5 produces an 82% accuracy testing value and performs better than the classification model. MobileNet V2 and IONet only get 80% and 70% testing accuracy. Although statistically, there is not much of a difference between the test accuracy values for YOLOv5 and MobileNet v2, the speed in classifying dental objects using YOLOv5 is more efficient, considering that YOLOv5 is an object detection model. There are still challenges with the deep learning technique used in this research, but these can be addressed in further development. A more complex model and the enlargement of more data, ensuring it is varied and balanced, can be used to address the limitations.