This study introduces the DUS Topp–Leone family of distributions, a novel extension of the Topp–Leone distribution enhanced by the DUS transformer. We derive the cumulative distribution function (CDF) and probability density function (PDF), demonstrating the distribution’s flexibility in modeling various lifetime phenomena. The DUS-TL exponential distribution was studied as a sub-model, with analytical and graphical evidence revealing that it exhibits a unique unimodal shape, along with fat-tail characteristics, making it suitable for time-to-event data analysis. We evaluate parameter estimation methods, revealing that non-Bayesian approaches, particularly Maximum Likelihood and Least Squares, outperform Bayesian techniques in terms of bias and root mean square error. Additionally, the distribution effectively models datasets with varying skewness and kurtosis values, as illustrated by its application to total factor productivity data across African countries and the mortality rate of people who injected drugs. Overall, the DUS Topp–Leone family represents a significant advancement in statistical modeling, offering robust tools for researchers in diverse fields.
Read full abstract