Millimetre-waves (mmWaves), a critical part of 5G, have not been extensively studied in the sub-Saharan tropical environment. This study was conducted to model the outdoor propagation path loss of mmWaves in four Nigerian cities at 28, 38, 60, and 73 GHz for 5G mobile systems: Abuja, Lagos, Ibadan, and Port Harcourt. The study utilised simulation data from a Composite Raytracing-Image-Method propagation model in MATLAB 2023a with OpenStreetMap 3D building maps to formulate the Close-In free-space Reference Distance (CI), Floating Intercept (FI), and Alpha–Beta-Gamma (ABG) large-scale path loss models. This model considered the specific atmospheric conditions, terrain, building materials and structures, and geographical layouts of each site. The study found that the path loss exponent ranged from 2.712 to 3.819 in line-of-sight scenarios, with shadow fading standard deviation (σCI) ranging from 11.778 to 37.199. In non-line-of-sight scenarios, the path loss exponent ranged from 3.375 to 5.033, with σCI ranging from 12.441 to 44.181 across the four frequencies studied. The ABG model consistently provided the most accurate predictions compared to CI and FI, particularly the mean absolute error and root mean square error values. However, performance varied across cities, frequencies, and scenarios, with Port Harcourt exhibiting the highest path loss values across all frequencies and scenarios, followed by Lagos. Furthermore, the omnidirectional large-scale path loss increases marginally as the frequency increases, except at 60 GHz, which had a higher path loss per distance than 73 GHz. Finally, the findings showed that the propagation characteristics of mmWaves for 5G networks in sub-Saharan tropical environments, such as Nigeria, exhibit significant variability based on factors such as atmospheric conditions, terrain, building materials, and geographical layouts. The formulated path loss models can be used to predict the coverage area and signal quality of millimetre-wave communication systems at these frequencies and locations.
Read full abstract