Consider the one-dimensional quasilinear impulsive boundary value problem involving the p-Laplace operator \t\t\t{−(ϕp(u′))′=λω(t)f(u),0<t<1,−Δu|t=tk=μIk(u(tk)),k=1,2,…,n,Δu′|t=tk=0,k=1,2,…,n,u′(0)=0,u(1)=∫01g(t)u(t)dt,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$ \\textstyle\\begin{cases} -(\\phi_{p}(u'))'=\\lambda \\omega (t)f(u), \\quad 0< t< 1, \\\\ -\\Delta u|_{t=t_{k}}=\\mu I_{k}(u(t_{k})), \\quad k=1,2,\\ldots,n, \\\\ \\Delta u'|_{t=t_{k}}=0, \\quad k=1,2,\\ldots,n, \\\\ u'(0)=0, \\qquad u(1)=\\int_{0}^{1}g(t)u(t)\\,dt, \\end{cases} $$\\end{document} where lambda, mu >0 are two positive parameters, phi_{p}(s) is the p-Laplace operator, i.e., phi_{p}(s)=|s|^{p-2}s, p>1, omega (t) changes sign on [0,1]. Several new results are obtained for the above quasilinear indefinite problem.
Read full abstract