Mycogenic synthesis of medically applied zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs) were exploited using Penicillium chrysogenum. The biogenesis and capping processes of the produced nano-metals were conducted by functional fungal extracellular enzymes and proteins. The obtained ZnO-NPs and CuO-NPs were characterized. Also, the antibacterial activity and minimum inhibitory concentration (MIC) values of ZnO-NPs and CuO-NPs were determined. Also, antibiofilm and antifungal activities were investigated. Results have demonstrated the ability of the bio-secreted proteins to cape and reduce ZnO and CuO to hexagonal and spherical ZnO-NPs and CuO-NPs with particle size at 9.0-35.0nm and 10.5-59.7nm, respectively. Both ZnO-NPs and CuO-NPs showed high antimicrobial activities not only against Gram-positive and Gram-negative bacteria but also against some phytopathogenic fungal strains. Besides this, those NPs showed varied antibiofilm effects against different microorganisms. Quantitative and qualitative analyses indicated that CuO-NPs had an effective antibiofilm activity against Staphylococcus aureus and therefore can be applied in diverse medical devices. Thus, the mycogenic green synthesized ZnO-NPs and CuO-NPs have the potential as smart nano-materials to be used in the medical field to limit the spread of some pathogenic microbes.
Read full abstract