In this paper we study the initial boundary value problem of wave equations with nonlinear damping and source terms: u t t − Δ u + a | u t | m − 1 u t = b | u | p − 1 u , x ∈ Ω , t > 0 , u ( x , 0 ) = u 0 ( x ) , u t ( x , 0 ) = u 1 ( x ) , x ∈ Ω , u ( x , t ) = 0 , x ∈ ∂ Ω , t ≥ 0 , where Ω ⊂ R N is a suitably smooth bounded domain. We prove that for any a > 0 and b > 0 , if 1 < p < m < ∞ , u 0 ( x ) ∈ H 0 1 ( Ω ) ∩ L p + 1 ( Ω ) , u 1 ( x ) ∈ L 2 ( Ω ) , then for any T > 0 , above problem admits a global solution u ( x , t ) ∈ L ∞ ( 0 , T ; H 0 1 ( Ω ) ∩ L p + 1 ( Ω ) ) with u t ( x , t ) ∈ L ∞ ( 0 , T ; L 2 ( Ω ) ) ∩ L m + 1 ( Ω × [ 0 , T ] ) . So the results of Georgiev and Ikehata are generalized and improved.