Montane grasslands and forest-grassland ecotones are unique and dynamic components of many landscapes, but the processes that regulate their dynamics are difficult to observe over ecologically relevant time spans. We aimed to demonstrate the efficacy of using grassland-forest ecotone trees to reconstruct spatial and temporal properties of the historical fire regime in a complex landscape of montane forests and adjacent grasslands. We sampled and crossdated fire-scarred trees along ecotones and compared variations in historical fire occurrence within and among nine adjoining valle basins in a 10,158 ha landscape. We analyzed fire year extensiveness, climate regulation, and the occurrence of consecutive fire years. The resulting tree-ring record covers 1240–2005 AD, with 296 trees recording 125 replicated fire years during the analysis period 1601–1902 AD. Mean fire intervals for all events recorded on two or more trees ranged from 4.7 to 13.6 years in individual valles, and a mean of 2.4 ± 1.7 (SD) years at the landscape scale. Between 1660 and 1902, extensive fires occurring in six or more valles occurred 15 times, on average at ~ 17-year intervals; 29 moderately widespread fires (3–5 valles) occurred during this period, at 8.7 year intervals on average. Widespread events occurred in years with a significantly lower Palmer Drought Severity Index (PDSI) preceded by years of significantly positive PDSI, indicating conditions favorable for fine fuel production. Spatial reconstruction of fire extent revealed multiple occurrences of consecutive-year fires burning non-overlapping areas, associated with persistent low PDSI anomalies preceded by positive conditions in antecedent years. A landscape spatiotemporal approach to reconstructing fire regimes of montane forest-grassland complexes provides a valuable baseline for guiding prescribed and natural fire management at large spatial scales.
Read full abstract