Resistive switching (RS) phenomena have been vigorously investigated in a large variety of materials and highlighted for its preeminent potential for the future nonvolatile semiconductor memory applications or reconfigurable logic circuits. Among the various resistive switching materials, the binary metal oxides demonstrate more advantageous for micro- or nano-electronics applications due to their simpler fabrication process and compatibility with conventional CMOS technology, though the mechanisms are controversial due to the diversity of RS effects. This review mainly focuses on the current understanding of the microscopic nature of RS in titanium oxides, in which the working mechanisms can be categorized into thermochemical metallization mechanism, valence change mechanism, and electrostatic/electronic mechanism. The approaches developed to investigate the RS and the specific switching processes related to different mechanisms are addressed. Since titanium oxides are oxygen-vacancy doped semiconductors, the role of defects is analyzed in detail and possible effective strategies to improve the performance of RS are addressed.
Read full abstract