Vacuum pressure swing adsorption (VPSA) has demonstrated promising features for the upgrading of biogas to biomethane. In this study, a biogas upgrading plant, comprised of a hybrid of an N-column VPSA unit (2 ≤N ≤ 6) with a combined heat and power (CHP) engine, was developed and its techno-economic characteristics were assessed via a mathematical approach. Moreover, the techno economic analysis was used for the state-of-the-art VPSA configuration (a sophisticated configuration) and compared with the developed hybrid process. The prominent parameters including feedstock transport, biogas production, desulfurization, drying, upgrading, combustion, and grid injection were considered in the analyses of the plant for the upgrading capacity in the range of 100–6500 Nm3/h. Sensitivity analysis of the most influencing parameters, i.e., electricity price, gas price, and feed processing revenues, was conducted for the developed models. Beside comparing upgrading cost of the sophisticated VPSA with other upgrading technologies, a detailed comparison with the best available membrane unit for biogas upgrading was conducted. The limitations of adsorption process and VPSA in reducing the upgrading cost were also investigated. The results showed that in the absence of subsidies and requirements for CO2 capture, the hybrid plant outperforms the sophisticated VPSA units. Also, higher market price of natural gas or feedstock processing revenues were necessary in order to render the plant profitable. The results showed that, at flowrates larger than 175 Nm3/h, the sophisticated VPSA unit required a lower investment cost than the membrane unit for identical outputs. The results also show that even at the most idealistic conditions in the adsorption process, the upgrading is not economically favorable without subsidies. The findings of this study shed light on the importance of process design for biogas upgrading.
Read full abstract