BackgroundGlioma is one of the most common malignant tumors. Glioblastoma (grade IV) is considered the most malignant form of human brain tumors. Maternal expression gene 3 (Meg3) encodes a non-coding RNA (ncRNA) that plays an important role in the development and progression of cancer. However, the role of Meg3 in glioma cells remains largely unclear.MethodsReverse transcription-quantitative (RT-q) PCR was conducted to evaluate the mRNA expression related to cell autophagy and EMT while protein expression was detected by Western blotting. Staining of acidic vacuoles and immunofluorescence staining were used to detect autophagy. The ability of cells to migrate and invade was detected by Transwell migration and invasion assays.ResultsIn the present study, it was found that the overexpression of Meg3 induced EMT, migration and invasion of glioma cells, whereas Meg3 overexpression induced autophagy of glioma cells. More importantly, the inhibition of autophagy impaired the EMT of glioma cells. In addition, Meg3-induced EMT, migration and invasion could be partially reversed by autophagy inhibitors, chloroquine (CQ) and Lys05, in glioma cells.ConclusionAll data suggest that Meg3 induces EMT and invasion of glioma cells via autophagy. Overall, the findings of the present study demonstrate the importance of Meg3 in the molecular etiology of glioma, which also indicate its potential applications in the treatment of glioma.