Silver (Ag) containing nanomaterials were successfully prepared by varying synthesis conditions to understand the influence of preparation conditions on the physicochemical and photocatalytic properties of these materials. Different analytical techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Diffuse reflectance UV-vis spectra (DR UV-vis), X-ray photoelectron spectroscopy (XPS) measurements, and N2-physisorption were used to investigate the physicochemical properties of synthesized Ag containing nanomaterials. The samples (Ag-1 and Ag-2) prepared using AgNO3, NaHCO3, and polyvinylpyrrolidone (PVP) template exhibited pure Ag metal nanorods and nanoparticles; the morphology of Ag metal is influenced by the hydrothermal treatment. The Ag-3 sample prepared without PVP template and calcined at 250 °C showed the presence of a pure Ag2O phase. However, the same sample dried at 50 °C (Ag-4) showed the presence of a pure Ag2CO3 phase. Interestingly, subjecting the sample to hydrothermal treatment (Ag-5) has not resulted in any change in crystal structure, but particle size was increased. All the synthesized Ag containing nanomaterials were used as photocatalysts for p-nitrophenol (p-NP) degradation under visible light irradiation. The Ag-4 sample (pure Ag2CO3 with small crystallite size) exhibited high photocatalytic activity (86% efficiency at pH 10, p-NP concentration of 16 mg L−1, 120 min and catalyst mass of 100 mg) compared to the other synthesized Ag containing nanomaterials. The high photocatalytic activity of the Ag-4 sample is possibly due to the presence of a pure Ag2CO3 crystal structure with nanorod morphology with a low band gap energy of 1.96 eV and relative high surface area.
Read full abstract