Abstract Pronounced temperature effects in angular resolved ultraviolet photoelectron spectroscopy from the (001) surface of the ternary heavy fermion compound CeNi 2 Ge 2 are presented. The measurements were performed on atomically clean and well-ordered thin films grown on a W(110) substrate. A strongly enhanced intensity at the Fermi edge ( ϵ F ) is observed at low-temperatures if the spectra are excited by means of HeI light ( hν =21.2 eV). In addition, the work function is dramatically increased with temperature, exhibiting an unusually high positive temperature coefficient of about 0.65 meV/K. The observed temperature dependency suggests a strong redistribution of the states near the Fermi-energy with increasing temperature. A simple model will be given that correlates the observed intensity changes at ϵ F with the change of the work function.
Read full abstract