We recently found that oligonucleotides containing the 6-oxocytosine heterocyclic base are efficient inhibitors of the HIV-1 integrase in vitro [Brodin, P., et al. (2001) Nucleosides Nucleotides Nucleic Acids 20, 481-486]. In this report, we demonstrate that the inhibition arises from a noncompetitive mechanism in which the modified oligonucleotide attacks the integrase-DNA complex, leading to its active disruption. This conclusion is based on the following results. First, despite the fact that the respective affinities of a 6-oxocytosine-containing oligonucleotide and of its nonmodified counterpart for integrase were identical, only the modified compound inhibited the enzyme activities. Second, DNA binding and UV cross-linking assays indicated that the 6-oxocytosine-containing oligonucleotide prevented the formation of a stable integrase-DNA complex. Third, the kinetics of the dissociation of the integrase-DNA complex were dramatically accelerated in the presence of the modified ODN, whereas the nonmodified counterpart did not influence the dissociation. This mechanism was supported by the ability of the 6-oxocytosine-containing oligonucleotide to inhibit the strand transfer activity of HIV-1 preintegration complexes in vitro. Disruption of integrase-DNA complexes by 6-oxocytosine-containing oligonucleotides constitutes an original mechanism of integration inhibition, therefore suggesting a strategy for searching for inhibitors of the HIV-1 preintegration complexes.
Read full abstract