The report presents the first method for simultaneous determination of plasma 2-(3-hydroxy-5-phosphonooxymethyl-2-methyl-4-pyridyl)-1,3-thiazolidine-4-carboxylic acid (HPPTCA), an adduct of cysteine (Cys) and active form of vitamin B6 pyridoxal 5′-phosphate (PLP), as well as total low molecular-weight thiols content, including Cys, homocysteine (Hcy), cysteinyl-glycine (Cys-Gly), and glutathione (GSH). The assay is based on high performance liquid chromatography coupled with ultraviolet detection (HPLC–UV) and involves disulfides reduction with tris(2-carboxyethyl)phosphine (TCEP), derivatization with 2-chloro-1-methylquinolinium tetrafluoroborate (CMQT) followed by sample deproteinization with perchloric acid (PCA). The chromatographic separation of obtained stable UV-absorbing derivatives is achieved on ZORBAX SB-C18 (150 × 4.6 mm, 5.0 µm) column using gradient elution with eluent consisted of 0.1 mol/L trichloroacetic acid (TCA), pH 1.7 and acetonitrile (ACN), delivered at a flow rate 1 mL/min. Under these conditions, the analytes are separated within 14 min at room temperature, and quantified by monitoring at 355 nm. Regarding HPPTCA, the assay linearity was demonstrated within a 1–100 µmol/L in plasma and the lowest concentration on the calibration curve was recognized as the limit of quantification (LOQ). The accuracy ranged from 92.74 to 105.57% and 95.43 to 115.73%, while precision varied from 2.48 to 6.99% and 0.84 to 6.98% for intra- and inter-day measurements, respectively. The utility of the assay was proved by application to plasma samples delivered by apparently healthy donors (n = 18) in which the HPPTCA concentration ranged from 19.2 to 65.6 µmol/L. The HPLC–UV assay provides complementary tool for routine clinical analysis, facilitating further studies on the role of aminothiols and HPPTCA in living systems.
Read full abstract