The biosynthesis of the b-amino acid, taurine, from cysteine is a two-step process, involving the oxidation of the sulfhydryl group and the decarboxylation of the amino acid (Stipanuk 2004). Although taurine was considered merely an end-product of cysteine degradation for many years, the detection of damaged retina in taurine deficient cats, convinced scientists that taurine was likely a physiologically important compound. This idea was reinforced over the next decade, as taurine was identified as an essential nutrient in several species, including the cat (Hayes and Carey 1975; Knopf et al. 1978; Sturman 1986), certain dogs (Gavaghan and Kittleson 1997; Backus et al. 2003; Belanger et al. 2005), the fox (Moise et al. 1991), some monkeys (Hayes et al. 1980; Stephan et al. 1981; Imaki et al. 1987) and more recently the anteater (Nofs et al. 2013). Among the defects associated with taurine deficiency have been retinal and tapetum degeneration (Hayes and Carey 1975; Sturman 1986), cardiac dysfunction (Pion et al. 1987, 1992; Novotny et al. 1991), immune deficiency (Schuller-Levis et al. 1990), muscle atrophy (Ito et al. 2008), premature aging (Ito et al. 2013a) and impaired reproduction (Hayes et al. 1980; Sturman 1986). The identification of taurine as an essential nutrient in some species and a semi-essential nutrient in man prompted the search for new physiological functions of the amino acid. Several of those newly discovered functions have been tied to taurine conjugation. One reaction involves the detoxification of hypochlorous acid by taurine resulting in the formation of taurine chloramine, a product that has the added benefit of possessing anti-inflammatory activity (Schuller-Levis and Park 2003; Marcinkiewicz and Kontny 2013; Kim and Cha 2014). Taurine also forms a conjugate (5-taurinomethyluridine) with the wobble position uridine of tRNA, a reaction that enhances the interaction between the modified uridine and guanine (Kirino et al. 2005; Kurata et al. 2008; Schaffer et al. 2013). Biochemically, this enhances the binding of the UUG codon to the taurine-modified AAU anticodon of tRNA, facilitating UUG decoding. When the formation of 5-taurinomethyluridine-tRNA is abolished, the biosynthesis of certain mitochondria encoded proteins dramatically declines, respiratory function falls, ATP generation decreases and the generation of oxidants by the respiratory chain increases (Jong et al. 2012; Schaffer et al. 2013). Another important function of taurine is the detoxification of xenobiotics and the neutralization of toxic aldehydes (Miyazaki and Matsuzaki 2013). Because taurine is found at a very high concentration within most cells (mM range) it is not surprising that it also serves as a key organic osmolyte (Lang et al. 1998; Huang et al. 2006). In the central nervous system, taurine specifically functions as a neuromodulator, interacting and altering the actions of the GABAA receptor and the glycine receptor (Menzie et al. 2013). The recognition that taurine is an essential nutrient in cats and certain monkeys initially raised questions about the nutritional status of taurine in humans, who generally consume large amounts of taurine in their diet but possess a limited capacity to synthesize taurine. However, unlike taurine-dependent species, such as the cat, humans lose S. W. Schaffer (&) Department of Pharmacology, School of Medicine, University of South Alabama, Mobile, AL 36695, USA e-mail: sschaffe@southalabama.edu
Read full abstract