The primary challenge in utilizing palm kernel meal (PKM, an agricultural by-product) as non-ruminant livestock feed is its high fibre content, predominantly in the form of mannan. Microbial fermentation offers an economically favourable alternative to enzyme supplementation for breaking down fibre in lignocellulosic biomass. In a recent study, our group isolated a B. subtilis strain F6 with a fast response time for mannanase production upon exposure to PKM. This work focuses on improving the mannanase production of the B. subtilis strain to achieve greater fibre hydrolysis of PKM without extending fermentation time. Mannanase GmuG, sourced from B. subtilis F6 and verified for its hydrolytic activity on PKM fibre, was homologously expressed using a replicative plasmid (pBE-S). Enzyme production was systematically improved by optimizing various regulatory elements, including the promoter, ribosome binding site, and signal peptide. Consequently, the neutral detergent fibre content of PKM was substantially reduced by 36.4 % in 22 h of solid-state fermentation using the engineered strain. Lastly, the highest mannanase-producing strain was examined for scaled-up fermentation. The impacts of fermentation on fibre and protein contents, as well as the surface morphology of PKM, were analysed. The outcomes of this study offer an efficient method for robust mannanase expression in B. subtilis and its potential application in the biotransformation of PKM and other mannan-rich bioresources for improved feed utilization.