The rise of autonomous driving technologies prompts a reevaluation of traditional urban traffic control and lane management. Dedicated lanes for connected and autonomous vehicles (CAVs), with intermittent access for other vehicles, have been proven to enhance road capacity and reduce underutilization moderately. However, this assumes all non-CAVs are smart vehicles, which is different from the current baseline for the street vehicle mix. Presently, our streets feature a mix of CAVs, smart vehicles, and human-driven vehicles, and the research on dedicated lanes using the realistic mixed traffic environment is missing. In this paper, we investigate the enhancement of road utilization using realistic mixed traffic combinations and identify the penetration rate of CAVs and smart vehicles necessary to improve baseline utilization. Previous studies have focused on lane-management strategies in single-vehicle settings, neglecting the interaction of CAVs with neighboring CAVs and smart vehicles. Therefore, we propose a multi-agent reinforcement learning-based framework to facilitate fair utilization of priority lanes, considering driving comfort, traffic efficiency, and safety during lane-changing. Through multiple experiments on a realistic network, our results demonstrate that the proposed framework significantly improves traffic efficiency, particularly when the penetration rate of CAVs is below 40% and Semi-Autonomous Vehicles (SAVs) constitute 50% of the remaining vehicles. The framework outperforms traditional lane management strategies, reducing mean waiting time and increasing average speed. This study provides nuanced information on different vehicle penetration rates, enabling more informed decisions on when to install priority lanes. This highlights the importance of considering mixed traffic environments in designing autonomous vehicle infrastructure and sets the stage for future advancements in urban traffic management.
Read full abstract