An experiment was conducted to see how relevance feedback could be used to build and adjust profiles to improve the performance of filtering systems. Data was collected during the system interaction of 18 graduate students with SIFTER (Smart Information Filtering Technology for Electronic Resources), a filtering system that ranks incoming information based on users' profiles. The data set came from a collection of 6000 records concerning consumer health. In the first phase of the study, three different modes of profile acquisition were compared. The explicit mode allowed users to directly specify the profile; the implicit mode utilized relevance feedback to create and refine the profile; and the combined mode allowed users to initialize the profile and to continuously refine it using relevance feedback. Filtering performance, measured in terms of Normalized Precision, showed that the three approaches were significantly different ( α=0.05 and p=0.012). The explicit mode of profile acquisition consistently produced superior results. Exclusive reliance on relevance feedback in the implicit mode resulted in inferior performance. The low performance obtained by the implicit acquisition mode motivated the second phase of the study, which aimed to clarify the role of context in relevance feedback judgments. An inductive content analysis of thinking aloud protocols showed dimensions that were highly situational, establishing the importance context plays in feedback relevance assessments. Results suggest the need for better representation of documents, profiles, and relevance feedback mechanisms that incorporate dimensions identified in this research.
Read full abstract