The paired combinatorial logit (PCL) model is one of the recent extended logit models adapted to resolve the overlapping problem in the route choice problem, while keeping the analytical tractability of the logit choice probability function. However, the development of efficient algorithms for solving the PCL model under congested and realistic networks is quite challenging, since it has large-dimensional solution variables as well as a complex objective function. In this paper, we examine the computation and application of the PCL stochastic user equilibrium (SUE) problem under congested and realistic networks. Specifically, we develop an improved path-based partial linearization algorithm for solving the PCL SUE problem by incorporating recent advances in line search strategies to enhance the computational efficiency required to determine a suitable stepsize that guarantees convergence. A real network in the city of Winnipeg is applied to examine the computational efficiency of the proposed algorithm and the robustness of various line search strategies. In addition, in order to acquire the practical implications of the PCL SUE model, we investigate the effectiveness of how the PCL model handles the effects of congestion, stochasticity, and similarity in comparison with the multinomial logit stochastic traffic equilibrium problem and the deterministic traffic equilibrium problem.
Read full abstract