With the rapid consumer adoption of mobile devices such as tablets and smart phones, tele-traffic has experienced a tremendous growth, making low-power technologies highly desirable for future communication networks. In this paper, we consider an ambient backscatter (AB)-based user cooperation (UC) scheme for mmWave wireless-powered communication networks (WPCNs) with lens antenna arrays. Firstly, we formulate an optimization problem to maximize the minimum rate of two users by jointly designing power and time allocation. Then, we introduce auxiliary variables and transform the original problem into a convex form. Finally, we propose an efficient algorithm to solve the transformed problem. Simulation results demonstrate that the proposed AB-based UC scheme outperforms the competing schemes, thus improving the fairness performance of throughput in WPCNs.