This study employs both simulation and experimental methodologies to evaluate the effectiveness of bi-sectional horizontal kinetic shading systems (KSS) with horizontal fins in enhancing daylight comfort across various climates. It emphasizes the importance of optimizing daylight levels while minimizing solar heat gain, particularly in the context of increasing energy demands and shifting climatic patterns. The study introduces a custom-designed bi-sectional KSS, simulated in three distinct climates—Wroclaw, Tehran, and Bangkok—using climate-based daylight modeling methods with the Ladybug and Honeybee tools in Rhino v.7 software. Standard daylight metrics, such as Useful Daylight Illuminance (UDI) and Daylight Glare Probability (DGP), were employed alongside custom metrics tailored to capture the unique dynamics of the bi-sectional KSS. The results were statistically analyzed using box plots and histograms, revealing UDI300–3000 medians of 78.51%, 88.96%, and 86.22% for Wroclaw, Tehran, and Bangkok, respectively. These findings demonstrate the KSS’s effectiveness in providing optimal daylight conditions across diverse climatic regions. Annual simulations based on standardized weather data showed that the KSS improved visual comfort by 61.04%, 148.60%, and 88.55%, respectively, compared to a scenario without any shading, and by 31.96%, 54.69%, and 37.05%, respectively, compared to a scenario with open static horizontal fins. The inclusion of KSS switching schedules, often overlooked in similar research, enhances the reproducibility and clarity of the findings. A physical reduced-scale mock-up of the bi-sectional KSS was then tested under real-weather conditions in Wroclaw (latitude 51° N) during June–July 2024. The mock-up consisted of two Chambers ‘1’ and ‘2’ equipped with the bi-sectional KSS prototype, and the other one without shading. Stepper motors managed the fins’ operation via a Python script on a Raspberry Pi 3 minicomputer. The control Chamber ‘1’ provided a baseline for comparing the KSS’s efficiency. Experimental results supported the simulations, demonstrating the KSS’s robustness in reducing high illuminance levels, with illuminance below 3000 lx maintained for 68% of the time during the experiment (conducted from 1 to 4 PM on three analysis days). While UDI and DA calculations were not feasible due to the limited number of sensors, the Eh1 values enabled the evaluation of the time illuminance to remain below the threshold. However, during the June–July 2024 heat waves, illuminance levels briefly exceeded the comfort threshold, reaching 4674 lx. Quantitative and qualitative analyses advocate for the broader application and further development of KSS as a climate-responsive shading system in various architectural contexts.