Abstract

This study aims to develop and evaluate a vertically rotated fin shading system for an energy-efficient, user-friendly office space. The system was designed to protect a 4 × 8 m office room with a south-facing facade from excessive solar radiation and glare. The shading system was modelled and simulated using Rhino/Ladybug 1.6.0 software with Radiance engine, based on real-weather data (*.epw file) for Wrocław, Poland at 51° lat. The simulation calculated the useful daylight illuminance (UDI) for 300–3000 lux and the daylight glare probability (DGP) for ten static and four kinetic variants of the system. The optimal angle of the fin rotation for the static variant was found to be α = 40°. The kinetic variants were activated when the work plane illuminance exceeded 3000 lux, as detected by an internal sensor “A”. The simulation results show that the kinetic system improved the daylight uniformity in the office room, achieving UDI300–3000 values above 80% for more than 40% of the room area. A prototype of the system in a 1:20 scale was built and tested on a testbed at Wrocław University of Science and Technology, using TESTO THL 160 data loggers. The measurements were conducted for a week in early November 2023, and three clear days were selected for analysis. The measurement results indicate that the low solar altitude on clear days causes high illuminance peaks (15–18 Klux) and significant contrast in the room, leading to unsatisfactory DGP values consistent with the simulation outcomes. Therefore, the study concludes that the proposed system may need an additional shading device to prevent glare during periods of low solar altitudes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.