Implantable cardioverter-defibrillators (ICDs) have revolutionized the treatment of patients at risk for sudden cardiac death. In the nearly 3 decades since the first human ICD implant,1 millions of devices have been implanted worldwide and innumerable lives have been saved. Successful resuscitation of a potentially lethal ventricular arrhythmia by an ICD system depends on successful arrhythmia detection and timely delivery of therapy. Both the ICD generator and the ICD lead are critical components of this system. The lead, in particular, is literally a lifeline whose purpose is to convey critical information about the heart’s rhythm to the ICD generator and, in turn, to deliver life-sustaining therapy when needed. Failure of an ICD lead may result in significant clinical events, including failure to pace, failure to defibrillate, inappropriate shocks, and even death. Article p 2727 ICD leads, like many medical technologies, have undergone a remarkable transformation. Epicardial leads, which necessitated a thoracotomy for lead placement, have given way to transvenous leads, which are easier to implant, less costly, and associated with decreased morbidity and mortality.2 Important advances in transvenous lead technology, such as the development of steroid elution, smaller diameter leads, novel insulations, and multipolar leads, have translated into meaningful clinical benefits for patients. Although modern ICD leads consist primarily of electrodes, conductors, insulation, and a fixation mechanism to attach the lead to the myocardium, lead design and performance vary from model to model. Indeed, monitoring of performance is critical not only to identify products with increased failure rates but also to provide physicians and patients with realistic expectations of device performance. In the current issue of Circulation , Eckstein et al add to our understanding of ICD lead performance.3 The investigators conducted a retrospective analysis of 1317 consecutive patients who received ICD systems (including 38 different ICD lead …