This paper presents a detailed scattering analysis of a hollow-core plasmonic-shell cylindrical wire to design an efficient, compact, narrowband, and reconfigurable optical absorber. The shell is formed by a thin graphene material, investigated in its epsilon-near-zero (ENZ) plasmonic region. Compared to the graphene plasmonic resonances in the terahertz(THz)/far-infrared (FIR) frequencies, the ENZ plasmonic resonances offer a blue shift in the operating frequency of the second-order plasmonic resonances by increasing the geometrical dimensions. This feature is successfully used to design efficient optical wave absorbers with absorption cross-sections much larger than geometrical and scattering cross-sections. The observed blue shift in the resonance spectrum, which is the key point of the design, is further verified by defining each particle with its polarizability and fulfilling the resonant scattering condition in the framework of Mie’s theory. Furthermore, graphene relaxation time and chemical potential can be used to manipulate the absorption rate. Observed resonances have narrow widths, achieved with simple geometry. To consider more practical scenarios, the one-dimensional arrangement of the cylindrical elements as a dense and sparse array is also considered and the design key point regarding graphene quality is revealed. The quality factor of the sparse array resonance is 2272.8 and it demands high-quality graphene material in design. It is also observed that due to the use of small particles in the design, the near-field and cooperative effects are not visible in the absorption cross-section of the array and a clear single peak is attained. This polarization-insensitive absorber can tolerate a wide range of incident angles with an absorption rate above 90%.
Read full abstract