In the last 2 decades, the improved clinical outcomes for multiple myeloma (MM) patients have been driven predominantly by therapeutics which exhibit limited activity outside plasma cell (PC) dyscrasias; do not target specific oncogenic mutations in MM cells, but rather pathways which are critical for PCs and dispensable for normal or malignant cells of most other lineages. We reasoned that identification of genes that are more potently / recurrently essential for MM cells, but less so for other neoplasias, would allow us to "re-identify" targets of currently used "PC-selective" anti-MM therapies. We also reasoned that systematic identification of MM-preferential dependencies could also uncover additional, previously underappreciated, genes which can serve as targets for potential future therapies and hopefully contribute to additional improvements in the therapeutic outcome for MM. To this end, we performed genome-scale CRISPR gene-editing studies to systematically characterize the molecular vulnerabilities of 20 MM cell lines and define which of these genes are more pronounced and/or recurrent dependencies for MM vs. cell lines (n=679) from other blood cancers and solid tumors. We identified 90+ genes whose function was significantly more essential for MM lines than other neoplasias. These MM-preferential dependencies included a large collection of transcription factors (e.g. IRF4, PRDM1, MAF, NFKB1, RELB, IKZF3, IKZF1, TCF3, CCND2, CBFB, MEF2C); transcriptional cofactors (e.g. POU2AF1); epigenetic regulators (e.g. EP300, DOT1L, HDAC1,ARID1A, CARM1); kinases such as IKBKB and CHUK/IKKa (both upstream of NF-κB), PIM2, IGF1R, SIK3,STK11; genes related to endoplasmic reticulum (ER) or Golgi function (e.g. HERPUD1, SYVN1,UBE2J1, SEC23B); as well as BCL2 and SMAD7. Results for several of these genes were further supported by in vitro studies with individual sgRNAs for CRISPR-based gene editing or activation of the respective genes; "addback" experiments with CRISPR-resistant cDNAs; shRNA studies in MM lines; use of small molecule inhibitors (e.g. against PIM kinases, CBFB, CARM1); and a focused in vivo CRISPR screen with MM.1S cells implanted in mice with BM-like scaffolds harboring a "humanized" stromal compartment: this latter in vivo study examined 46 MM-preferential dependencies which are also essential for MM.1S cells in vitro and observed that 41 of these genes were also essential for MM.1Scells in the "humanized" BM-like in vivo system. Some MM-preferential dependencies are essential for subsets of leukemia or lymphoma lines, but most have more pronounced/recurrent essentiality in MM vs. other blood cancers. In terms of overexpression (in high- vs. standard-risk MM; MM vs. normal PCs; or MM vs other cancers); frequency of mutations, DNA copy number gain or proximity to superenhancers, most of the MM-preferential dependencies do not exhibit such alterations or are not ranked in the top-100 genes in terms of the magnitude or frequency of these alterations. Notably, among the MM-preferential dependencies identified in our study, the majority are universally expressed in MM patient samples, while >80% and >75% of these genes have detectable transcript levels (RPKM>1) in CD138+ cells from at least 50% or 80%, respectively, of newly-diagnosed MM patients (MMRF CoMMpass study), suggesting broad expression of these dependencies across MM patients, including individuals with high-risk disease. It was reassuring to observe that MM-preferential dependencies identified in our study include prominent known targets for therapeutics with relatively MM-selective clinical activity (e.g. thalidomide derivatives [IKZF1/IKZF3], proteasome inhibitors [NF-kappaB genes and ER function] or panobinostat [HDAC1]). The identification of these known genes as preferential MM dependencies provides a mechanistic explanation for the relatively selective clinical activity of the respective therapies in MM/PC dyscrasias and also underscores the promising therapeutic implications of the large number of additional and previously underappreciated / understudied MM-preferential dependencies identified in our CRISPR-based functional studies. Disclosures Boise: Genentech Inc.: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Honoraria, Research Funding. Gray:Gatekeeper, Syros, Petra, C4, B2S and Soltego.: Equity Ownership; Novartis, Takeda, Astellas, Taiho, Janssen, Kinogen, Voronoi, Her2llc, Deerfield and Sanofi.: Equity Ownership, Research Funding. Tsherniak:Tango Therapeutics: Consultancy. Mitsiades:Takeda: Other: employment of a relative ; Ionis Pharmaceuticals: Honoraria; Fate Therapeutics: Honoraria; Arch Oncology: Research Funding; Sanofi: Research Funding; Karyopharm: Research Funding; Abbvie: Research Funding; TEVA: Research Funding; EMD Serono: Research Funding; Janssen/Johnson & Johnson: Research Funding.