The optimum use and appropriate management of renewable resources, with dynamic characteristics, needs to evaluate and classify the ecological capability of environment and its socio-economic conditions. Land use planning (LUP) is an iterative process based on the dialogue amongst all stakeholders aiming at the negotiation and decision for a sustainable form of land use in rural areas as well as initiating and monitoring its implementation. The main objective of this paper is the implementation of integration quantitative model namely EMOLUP (Eco-Socioeconomic Model of Land Use Planning) in Sepidan Township of the Fars province in Iran. Therefore, two main steps were prepared for the new model: I. Ecological capability evaluation of different land uses. This step is composed of the geometric mean method instead of the Boolean and MCE methods. II. Land use planning and prioritizing for the various uses. This step has been composed intersecting ecological capability maps and land use planning, based on two scenarios (economic and social). Then, it was compared with current qualitative and quantitative methods. Also, current land use is used for calibrating and modifying the proposed models. Results show using the geometric mean method is better than Boolean models, and the method of the calibrated geometric mean (with overall accuracy > 63 and kappa index > 0.39 for all land uses) is the best among different used models. Also, results of prioritizing and land use planning showed that quantitative method with two socio-economic scenarios (with an average of EPM erosion model = 0.31) is the best method for land use planning in the study area. We confirmed that the EMOLUP model can contribute to a better understand land use planning in different regions of the world.