Positive airway pressure (PAP) therapy refers to sleep disordered breathing treatment that uses a stream of compressed air to support the airway during sleep. Even though the use of PAP therapy has been shown to be effective in improving the symptoms and quality of life, many patients are intolerant of the treatment due to poor mask fit. In this paper, our goal is to develop a computational approach for designing custom-fit PAP masks such that they can achieve better mask fit performance in terms of mask leakage and comfort. Our key observation is that a custom-fit PAP mask should fit a patient’s face in its deformed state instead of in its rest state since the PAP mask cushion undergoes notable deformation before reaching an equilibrium state during PAP therapy. To this end, we compute the equilibrium state of a mask cushion using the finite element method, and quantitatively measure the leakage and comfort of the mask cushion in this state. We further optimize the mask cushion geometry to minimize the two measures while ensuring that the cushion can be easily fabricated with molding. We demonstrate the effectiveness of our computational approach on a variety of face models and different types of PAP masks. Experimental results on real subjects show that our designed custom-fit PAP masks are able to achieve better mask fit performance than a generic PAP mask and custom-fit PAP masks designed by a state-of-the-art approach.
Read full abstract