BackgroundPsychomotor retardation (PMR) is frequently noted as a characteristic feature of major depressive disorder (MDD). In patients with depression, it is characterized by retardation of speech, emotion, thinking, and cognition. This study explored the activation pattern of the prefrontal cortex (PFC) during the finger-tapping task (FTT) in subjects with MDD, aiming to provide additional understanding on the connection between PMR and PFC activation pattern in depression through the use of near-Infrared Spectroscopy (NIRS). We hypothesized that, through use of NIRS during the FTT, motor retardation in depression would generate a distinct PFC activation pattern, allowing for differentiation between patients with MDD and healthy controls (HCs). MethodsThirty-five patients with MDD and thirty-nine HCs underwent NIRS evaluation during performance of the FTT. The FTT included both left-finger tapping and right-finger tapping performed by a computer screen. Each participant was assessed using a 45-channel NIRS and various clinical scales. FindingsDuring the left-FTT, the left orbitofrontal cortex (OFC) showed higher oxy-hemoglobin (Oxy-Hb) activation in the MDD group when compared to the HCs. During the right-FTT, the right dorsolateral prefrontal cortex (DLPFC) demonstrated lower Oxy-Hb activation, and the dorsomedial prefrontal cortex (DMPFC) showed higher Oxy-Hb activation in the MDD group versus the HC group. ConclusionOur results demonstrated different activation patterns of the PFC between the MDD and HC groups, using FTT as a motor performance task. In particular, the OFC, the DLPFC and the DMPFC areas hold promise as new useful sites for such differentiation in future investigations.