Diversification at the plot level, through the use of intercropping (mixtures of crops), is an alternative to the conventional system of intensive agriculture, based on monospecific, usually single-variety canopies. Intercropping has been shown to provide benefits in terms of disease control. However, competition phenomena and the heterogeneity of the associated crops raise new ecological questions, particularly with regard to the dynamics and evolution of parasite populations. No study has assessed the potential impact of these associations on the dynamics of pathogenic species complexes. Changes in the nutritional status of plants and therefore in their physiological susceptibility to infection within intercropping systems could contribute to an increased diversity of ecological niches and thus affect the composition of the parasitic complex and its spatiotemporal dynamics. In this review, focusing on foliar diseases of fungal origin, and after outlining some elements of the biology and epidemiology of these fungal diseases, we will (i) describe the mechanisms that contribute to the composition of disease clusters and that drive interactions, but we will also review the strategies that these foliar diseases have adopted to deal with these co-infections; (ii) define how intercropping can lead to changes in epidemic dynamics, in particular by presenting the mechanisms that have a direct and indirect effect on disease evolution; and (iii) present the approach that should be adopted to properly study intercropping correctly in a multi-infection situation.