Geophysical logs can be used not only for qualitative interpretation such as strata correlation but also for geotechnical assessment through quantitative data analysis. In an emerging digital mining age, such a use of geophysical logs helps to establish reliable geological and geotechnical models, which reduces safety and financial risks due to geological and geotechnical uncertainty for new and existing coal mining projects. This paper presents some examples of geological and geotechnical characterizations from geophysical logs at various coal mines in Australia and India. The applications include rock strength and coal quality estimations, automated lithological/geotechnical interpretation and geophysical strata rating, all based on geophysical logs. These derived parameters could provide input to modelling, control, even ‘digital twin’ generation in a form of geological and geotechnical models as part of the future digital mining. The outcomes can be visualized in 3D space and used for identifying the key geotechnical strata units that are responsible for caving behaviors during longwall mining. This could assist site geologists and planning and production engineers predict and manage mining conditions on an ongoing basis. Both conventional logs such as density, natural gamma and sonic and less common logging data, such as full waveform sonic, televiewer and SIROLOG spectrometric natural gamma logging data are examined for their potential applications. The geotechnical strata classification and rock strengths predicted from the geophysical logs match the laboratory tests, drill core geotechnical strata classification, core photos and the mining condition/behavior observed. These illustrate the usefulness and effectiveness of using geophysical logs for geological and geotechnical characterizations.
Read full abstract