Purpose. To evaluate the application of convolutional neural networks for the automatic detection of Fuchs' dystrophy. Material and methods. The study included 700 biomicroscopic images of the corneal endothelium (Tomey EM-3000) randomly selected from the database of the Saint-Petersburg brunch of the S. Fyodorov Eye Microsurgery Federal State Institution. At the first stage, the images were divided into 2 groups. The first group included images with the presence of Fuchs' dystrophy, the second – another pathology or a healthy cornea. The corneal endothelial cell density images were divided into three categories: training, validation, and test datasets. In our study we tested various architectures of convolutional neural networks: ResNet18, ResNet50, VGG16, VGG19 and GoogleNet. Results. The approbation of the neural network on the test sample has given the following values of the F-measure: ResNet18: 0.985; ResNet50: 1,000; VGG16: 0.940; VGG19: 0.990; GoogleNet: 0.987. Pre-trained network ResNet50 performed best with frozen layers, Adam optimizer, cross-entropy as a loss function, and a training step of 0.000005. Conclusion. The use of convolutional neural networks for the automatic detection of Fuchs' dystrophy can be successfully implemented as part of a doctor's decision support system. ResNet50 showed the best results among all types of models and did not give a single error on the test sample, which indicates the high efficiency of using this network in the classification algorithm for corneal endothelial images. Keywords: artificial intelligence, Fuchs corneal dystrophy, convolutional neural networks
Read full abstract