Abstract Extensive use of antibiotics in medicine, veterinary practice and animal husbandry has promoted the development and dissemination of bacterial drug resistance. The number of resistant pathogens causing common infectious diseases increases rapidly and creates worldwide public health problem. Commensal bacteria, including lactic acid bacteria of genera Enterococcus and Lactococcus colonizing gastrointestinal and urogenital tracts of humans and animals may act as vehicles of antibiotic resistance genes similar to those found in pathogens. Lactococci and enterococci are widely used in manufacturing of fermented products and as probiotics, therefore monitoring and control of transmissible antibiotic resistance determinants in industrial strains of these microorganisms is necessary to approve their Qualified Presumption of Safety status. Understanding the nature and molecular mechanisms of antibiotic resistance in enterococci and lactococci is essential, as intrinsic resistant bacteria pose no threat to environment and human health in contrast to bacteria with resistance acquired through horizontal transfer of resistance genes. The review summarizes current knowledge concerning intrinsic and acquired antibiotic resistance in Lactococcus and Enterococcus genera, and discusses role of enterococci and lactococci in distribution of this feature.
Read full abstract